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Abstract

This paper presents two parallel I/O methods for the visualization of time-varying volume

data in a high-performance computing environment. We discuss the interplay between the

parallel renderer, I/O strategy, and file system, and show the results of our study on the

performance of the I/O strategies with and without MPI parallel I/O support. The targeted

application is earthquake modeling using a large 3D unstructured mesh consisting of one

hundred millions cells. Our test results on the HP/Compaq AlphaServer operated at the

Pittsburgh Supercomputing Center demonstrate that the I/O methods effectively remove

the I/O bottlenecks commonly present in time-varying data visualization, and therefore help

significantly lower interframe delay. This high-performance visualization solution allows

scientists to explore their data in the temporal, spatial, and visualization domains at high

resolution. Such new explorability, likely not presently available to most computational

science groups, will help lead to many new insights.

Key words: high-performance computing, massively parallel supercomputing, MPI,

scientific visualization, parallel I/O, parallel rendering, time-varying data, volume

rendering

1 Introduction

Parallel supercomputers allow scientists to model complex physical phenomena

and chemical processes with a high degree of precision and sophistication. How-

ever, a complete run of such a high-resolution time-varying simulation can easily

output hundreds of gigabytes to terabytes of data, which present tremendous chal-

lenges to the management and analysis of the data. Frequently, the data sets are

either not fully explored or downsampled spatially or temporally to fit in the lim-

ited storage space, which defeat the original purpose of perform the high-resolution

simulations.

Visualization transforms large amounts of data into vivid images revealing impor-

tant aspects of the data, which often leads to profound levels of insight and under-

standing. Visualization becomes the most powerful when the scientists are allowed
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to interactively explore the data. Interactive visualization is not generally available

to scientists because rendering the highest-resolution data requires the most pow-

erful parallel supercomputers.

In addition to the overall size of the data set, what makes large time-varying data

visualization hard is the need to constantly transfer each time step of the data from

disk to memory to carry out the rendering calculations. This I/O requirement if

not appropriately addressed can seriously hamper interactive visualization and ex-

ploration for discovery. Many parallel rendering algorithms have been introduced

and shown to achieve high parallel efficiency, but the designs of most of these al-

gorithms were done by considering rendering in isolation. In particular, I/O was

mostly neglected. As a result, these renderers are either used in a limited way or

totally not deployable for routine data visualization tasks.

In this paper, we discuss I/O support for parallel visualization, and present an exper-

imental study of two parallel I/O strategies (1) designed specifically for rendering

time-varying volume data in a typical high-performance computing environment.

The volume data sets we used in our study were generated by the highest-resolution

earthquake simulation performed to date (2). The I/O strategies adapt to the data

size and parallel system performance such that I/O and data preprocessing costs

could be effectively hidden. Interframe delay becomes completely determined by

the rendering cost. Consequently, as long as a sufficient number of rendering pro-

cessors are used, the desired framerate can be obtained. All our tests were per-

formed on the HP/Compaq AlphaServer operated at the Pittsburgh Supercomputing

Center.

2 Parallel I/O

The widespread use of large-scale multiprocessor systems in scientific computing

demands the advancement of parallel I/O technologies. MPI-IO was introduced to

provide a common parallel I/O interface but its implementations did not consis-

tently deliver desirable performance. Consequently, nowadays most parallel appli-

cations still use simple parallel file systems whose performance are largely deter-

mined by their hardware configurations and the network interconnect.

File I/O bottleneck mostly comes from mismatching between the data access pat-

terns and the actual data storage order on disk. The situation becomes the worst

when multiple processors make many small noncontiguous accesses to the disk. In

this section, we review some of parallel I/O concepts and techniques introduced to

address such a problem.
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2.1 Collective I/O

Collective I/O is a technique with which processors cooperate to more efficiently

fetch data from disks. The basic idea is to merge small, noncontiguous disk accesses

into large, contiguous disk accesses by multiple processors. After each processor

fetches a chunk of the data from disk, through the interconnection network data

items are routed to the processor requests them. Such a two-phase I/O approach

was first introduced by Del Rosario et al. (3), and then extended by Rajeev Thakur

et al. in ROMIO (4).

That collective I/O helps is based on the assumption that the cost of unoptimized

(numerous noncontiguous) I/O operations is greater than the combined cost of ag-

gregating I/O operations and extra network communication. In practice, intercon-

nection network speed is several orders of magnitude higher than the disk access

speed so collective I/O can help improve I/O performance.

David Kotz introduced disk-directed I/O (5) which moves the I/O management job

from the client program running on the compute processors to the disk server (i.e.,

I/O processors which the disks directly attached to). For collective I/O, the com-

pute processors broadcast their data need to all the I/O processors. Then each I/O

processor optimizes disk access according data residency. Each I/O processor uses

double-buffering for transferring data between the disk and compute processors.

Disk-directed I/O requires no communication among I/O processors nor among

compute processors. Unlike the client-level, two-phase I/O, it also does not require

an explicit data permutation phase. The performance of disk-direct I/O has been

demonstrated to attain 93interface for conducting disk-directed I/O at logical file

level, rather than the physical disk level (6). The I/O strategies we have used re-

semble disk-directed I/O.

2.2 Prefetching

Prefetching is a technique to hide the cost of reading data from disk. After reading

but before starting to process the current data block, the compute processor issues

an asynchronous read request to fetch the next data block. In this way, the com-

putation time of the current block can overlap with the I/O of the next block. This

technique suits for applications whose access patterns can be predicted; that is, the

I/O access patterns exhibit certain regularity. If the computation time is compara-

ble to the I/O time, prefetching can result in significant performance improvement.

Prefetching has been used in various systems (7; 8).
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2.3 Data Sieving

The objective of data sieving is similar to that of Collective I/O, which is to re-

place many small nonconsecutive reads with fewer large consecutive reads. With

data sieving, however, the fetching of several noncontiguous pieces of data is re-

placed by a single read of a large contiguous chunk of the data containing all those

individual pieces. As a result, more data is read than actually needed. A buffer is

used to hold the fetched data in memory before the pieces are extracted from it and

distributed to the compute processors. In most cases, the benefit of reading large,

contiguous chunks of data far outweighs the cost of reading unwanted data (9), but

the memory overhead to store the unneeded data for data sieving can become ex-

cessive. ROMIO (4) provides a user-controllable parameter to define the maximum

amount of contiguous data that a process can read at a time with data sieving.

2.4 MPI-IO

MPI-IO (10) provides both portability and convenience to perform parallel file I/O.

It defines a set of routines for transferring data to and from external storage devices,

and supports a number of useful parallel I/O features including collective I/O. It is

possible to achieve good performance with MPI I/O by following a set of guide-

lines. In this paper, we also present our experimental study on MPI I/O using the

parallel visualization application.

3 A Parallel Visualization Problem

One of the large-scale scientific simulations motiving our work is earthquake mod-

eling. Simulating the earthquake response of a large basin is accomplished by nu-

merically solving the partial differential equations (PDEs) of elastic wave propaga-

tion (11). An unstructured-mesh finite element method is used for spatial approx-

imation, and an explicit central difference scheme is used in time. The mesh size

is tailored to the local wavelength of propagating waves via an octree-based mesh

generator (12). A massively parallel computer must be employed to solve the re-

sulting dynamic equations. The specific data set we used in our tests was from the

modeling of the 1994 Northridge mainshock to 1Hz resolution, the highest resolu-

tion obtained to date, requiring a discretization of the greater LA basin to 10 meters

finest resolution with 100 million unstructured hexahedral finite elements.

A typical dataset generated by the ground motion simulation may consist of thou-

sands of time steps and the spatial domain is composed of 10-100 million elements.

Each mesh node outputs six values, three displacement components and three ve-
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Fig. 1. Two selected time steps from the earthquake simulation.

locity components. To efficiently browse both the temporal and spatial domains of

the data, the corresponding visualization challenge is thus concerned with transfer-

ring and rendering large time-varying data possibly with multiple variables. Fig-

ure 1 displays two selected time steps from the simulation.

Several strategies are commonly used to achieve high performance rendering of

large time-varying volume datasets in a parallel computing environment. While

this paper focuses on I/O issues, we first describe the parallel visualization method

we have chosen to use and the corresponding I/O requirements.

3.1 Parallel and distributed rendering

Our approach to this large data problem is to distribute both the data and visualiza-

tion calculations to multiple processors of a parallel computer. In this way, we not

only can visualize the dataset at its highest resolution but also achieve interactive

rendering rates. The parallel rendering algorithm used thus must be highly efficient

and scalable to a large number of processors because of the size of the dataset. Ma

and Crockett (13) demonstrate a highly efficient, cell-projection volume rendering

algorithm using up to 512 T3E processors for rendering 18 millions tetrahedral

elements from an aerodynamic flow simulation. They achieve over 75% parallel

efficiency by amortizing the communication cost as much as possible and using a

fine-grain image space load partitioning strategy. Parker et al. (14) use ray tracing

techniques to render images of isosurfaces. Although ray tracing is a computation-

ally expensive process, it is highly parallelizable and scalable on shared-memory

multiprocessor computers. By incorporating a set of optimization techniques and

advanced lighting, they demonstrate very interactive, high quality isosurface visu-

alization of the Visible Woman dataset using up to 124 nodes of an SGI Reality

Monster with 80%-95% parallel efficiency. Wylie et al. (15) show how to achieve

scalable rendering of large isosurfaces (7-469 million triangles) and a rendering

performance of 300 million triangles per second using a 64-node PC cluster with

a commodity graphics card on each node. The two key optimizations they use are

lowering the size of the image data that must be transferred among nodes by em-

ploying compression, and performing compositing directly on compressed data.
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Bethel et al. (16) introduce a remote and distributed visualization architecture as a

promising solution to very large scale data visualization.

3.2 Unstructured-grid data

To efficiently visualize unstructured data additional information about the structure

of the mesh needs to be computed and stored, which incurs considerable memory

and computational overhead. For example, ray tracing rendering needs explicit con-

nectivity information for each ray to march from one element to the next (17). The

rendering algorithm introduced by Ma and Crockett (18) requires no connectivity

information. Since each tetrahedral element is rendered completely independent of

other elements, data distribution can be done in a more flexible manner facilitat-

ing load balancing. Chen, Fujishiro, and Nakajima (19) present a hybrid parallel

rendering algorithm for large-scale unstructured data visualization on SMP clus-

ters such as the Hitachi SR8000. The three-level hybrid parallelization employed

consists of message passing for inter-SMP node communication, loop directives by

OpenMP for intra-SMP node parallelization, and vectorization for each processor.

A set of optimization techniques are used to achieve maximum parallel efficiency.

In particular, due to their use of an SMP machine, dynamic load balancing can be

done effectively. However, their work does not address the problem of rendering

time-varying data.

Our visualization solution couples the parallel rendering algorithm of Ma and Crokett (18)

with our new I/O strategies to form a highly efficient parallel visualization pipeline

for near-interactive browsing of large time-varying volume data.

4 The Parallel Rendering Method

The basic architecture of our parallel visualization solution is shown in Figure 2. It

is essentially a parallel pipeline and become the most efficient as soon as all pipeline

stages are filled. The input processors read data files from the storage device which

in our design must be a parallel file system, prepare the raw data for rendering

calculations, and distribute the resulting data blocks to the rendering processors.

The rendering processors produce volume rendered images for its local data blocks

and deliver the images to the output processors which then send the images to a

display or storage device.

Since the mesh structure never changes throughout the simulation, a one-time pre-

processing step is done to generate a spatial (octree) encoding of the raw data. The

input processors use this octree along with a workload estimation method to dis-

tribute blocks of hexahedral elements among the rendering processors. Each block
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Fig. 2. The architecture of the parallel visualization solution.

of elements is associated with a subtree of the global octree. This subtree is deliv-

ered to the assigned rendering processor for the corresponding block of data only

once at the beginning since all time steps data use the same subtree structure. Non-

blocking send and receive are used for the blocks distribution.

In addition to determining the partitioning and distribution of data blocks, each in-

put processor also performs a set of calculations to prepare the data for rendering.

Typical calculations include quantization (from 32-bit to 8-bit), central differencing

to derive gradient vectors for lighting, and one-side differencing to derive rates of

change for temporal domain enhancement. Lighting and temporal domain enhance-

ment are optional. As we will show later, the amount of preprocessing calculations

can influence the setting of an optimal system configuration for rendering. Note

that it is more convenient and economical to conduct these preprocessing tasks at

the input processors rather than the rendering processors. First, data replication is

avoided because the input processors have access to all the needed data. Second,

like I/O the calculations become free because of the parallel pipelining.

The number of rendering processors used is selected based on the rendering perfor-

mance requirements. After each rendering processor receives a subset of the vol-

ume data through the input processors, our parallel rendering algorithm performs

a sequence of tasks: view-dependent preprocessing, local volume rendering, image

compositing, and image delivering. Before the local rendering step begins, each

rendering processor conducts a view-dependent preprocessing step whose cost is

very small and thus negligible. As described later, this preprocessing is for opti-

mizing the image compositing step. While rendering calculations are carried out,

new data blocks for subsequent time steps are continuously transferred from the

input processors in the background. As expected, overlapping data transport and

rendering helps lower interframe delay.
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4.1 Adaptive rendering

Rendering cost can be cut significantly by moving up the octree and rendering at

coarser level blocks instead. This is done for maintaining the needed interactiv-

ity for exploring in the visualization parameter space and the data space. A good

approach is to render adaptively by matching the data resolution to the image res-

olution while taking into account the desired rendering rates. For example, when

rendering tens of millions elements to a 512×512 pixels image, unless a close-up

view is selected, rendering at the highest resolution level would not reveal more

details. One of the calculations that the view-dependent preprocessing step per-

forms is to choose the appropriate octree level. The saving from such an adaptive

approach can be tremendous and there is virtually very little impact on the level

of information presented in the resulting images. Presently the appropriate level to

use is computed based on the image resolution, data resolution, and a user-specified

number that limits the number of elements allowed to be projected into a pixel.

4.2 Parallel image compositing

The parallel rendering algorithm is sort-last which thus requires a final compositing

step involving inter-processor communication. Several parallel image compositing

algorithms are available (20; 21; 22) but their efficiency is mostly limited to the

use of specific network topology or number of processors. We have adopted the

SLIC algorithm (23) which is an optimized version of the direct send compositing

method to offer maximum flexibility and performance. The direct send method has

each processor send pixels directly to the processor responsible for compositing

them. This approach has been used in (24; 25; 18) because it is easy to implement

and does not require a special network topology. With direct send compositing, in

the worst case there are n(n − 1) messages to be exchanged among n compositing

nodes. For low-bandwidth networks, care should be taken to avoid many-to-one or

many-to-many communication.

SLIC uses a minimal number of messages to complete the parallel compositing

task. The optimizations are achieved by using a view-dependent precomputed com-

positing schedule. Reducing the number of messages that must be exchanged among

processors should be beneficial since it is generally true that communication is

more expensive than computation. The preprocessing step to compute a composit-

ing schedule for each new view introduces very low overhead, generally under 10

milliseconds. With the resulting schedule, the total amount of data that must be

sent over the entire network to accomplish the compositing task is minimized. Ac-

cording to our test results, SLIC outperforms previous algorithms, especially when

rendering high-resolution images, like 1024×1024 pixels or larger. Since image

compositing contributes to the parallelization overheads, reducing its cost helps
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MPI Collective I/O: fetching time for one timestep
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Fig. 3. (a) Data distribution pattern;(b) using MPI Collective I/O to read and distribute one

time step among rendering processors.

improve parallel efficiency.

5 Parallel I/O Strategies and Test Results

We have developed and experimentally studied two I/O strategies. Our objective

is to make the rendering performance independent of the I/O requirements. This

is possible if both a high-speed network and parallel I/O support are available.

The computing environment at Pittsburgh Supercomputing Center adopts Quadrics

PFS. There are 64 file servers with 300MB per second data maximum data transfer

rate each piece, and the maximum throughput is about 18GB per second. Currently

the 64 file server nodes are divided into 4 independent filesystems, each containing

16 nodes. By default a file is striped across 8 nodes. Quadrics Elan3 (dual-rail) is

the high-speed network connecting the file systems. Each rail is capable of around

250MB per second. The message latency is under 10 /musecs. We have studied

how to effectively utilize these high-performance computing resources for the vi-

sualization of time-varying ground motion simulation data consisting of 100 mil-

lion hexahedral elements. Each time step of the data to be transfer is about 400

megabytes.

Figure 3(a) shows the assignment of the 100 million data elements among 64 pro-

cessors, which is rather random suggesting the data access pattern must be very

irregular. We first tested the performance of MPI-IO collective I/O for fetching one

time. Figure 3 (b) demonstrates that the fetching time for one time step is not

scalable with the number of the rendering processors. As a result, even though the

rendering time can be reduced by using more rendering processors, it is impossible

to achieve multiple frames per second rendering rates due to the high read cost with

MPI-IO.

Our designs use parallel pipelining. In addition to employing multiple rendering
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Timing for One Input Processor with Different Preprocessing
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Fig. 4. Using one input processor, the fetching time is 4 seconds, and sending times is

1.7 seconds. The preprocessing times vary: data partition takes 1.15 seconds; quantization

requires 7.91 seconds; and LIC rendering takes 7.6 seconds for 512×512 image.

processors, multiple input processors are used to maximize data rates with concur-

rent reads and writes. The parallel pipelining becomes the most efficient when the

I/O costs are hidden so that the rendering time dominates the overall turnaround

time and interframe delay.

5.1 1D input processors (IDIP)

To maximize bandwidth utilization of the parallel file system, it is advantageous to

use multiple I/O processes with each processor reading and preprocessing a com-

plete, single time step of the data. In this way, best performance can be achieved

if Tf + Tp = Ts(m − 1) where Tf is the time to fetch the data, Tp the preprocess-

ing time, Ts the time to send the data to a rendering processor, and m the number

of processors used. As a result, t he number of input processors should be used is

m =
Tf +Tp

Ts
+ 1. This would eliminate the idle time of a rendering processor be-

tween receiving two consecutive time steps. When Ts is smaller than the rendering

time Tr which normally is the case, we can let m =
Tf +Tp

Tr
+1 instead, which allows

us to use fewer input processors but still keep the rendering processors busy.

5.1.1 Test results

We first measured how different preprocessing tasks impact the overall perfor-

mance when a single input processor is used. The timing results also allow us to

predict the performance of using more input processors, and to select the optimal

input processor number. Figure 4 presents the test results for three different types

of preprocessing tasks: data partition, quantization calculations, and LIC rendering.

As more preprocessing tasks are added, the time for transferring and preparing the

data increases from 7 to 23 seconds.
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The second set of tests was performed using 64 rendering processors with differ-

ent rendering and preprocessing requirements. In the first case, the image size is

512×512. The rendering is about 2.13 seconds, and the total time due to I/O and

preprocessing is about 15 seconds if only a single input processor is used. Prepro-

cessing cost includes the time to do data partition and quantization. Figure 5 (a)

shows when using 8 input processors the total time due to I/O and preprocessing

becomes very close to the rendering time, making possible hiding of the I/O and

preprocessing cost. Recall that m =
Tf +Tp

Tr
+ 1. Using the actual values for Tf , Tp,

and Tr, we obtain:

(4.0+9.06)
2.13

+ 1 = 7.13

which matches Figure 5 (a).

If the image size is 1024×1024, since the rendering time would increase, the num-

ber of input processors needed would decrease. Out test results verify this as shown

in Figure 5 (b). Only 5 input processors are needed to make the total time similar to

the rendering time which is 3.63 seconds. Compute m using our model, we obtain:

(4.0+9.06)
3.63

+ 1 = 4.60

which matches the test results.

Furthermore, if adding lighting effect, it requires calculations of gradient informa-

tion to approximate local surface orientation plus solving the lighting equation at

each sample point. Using input processors to compute gradients requires transmit-

ting the gradient vectors to the rendering processors. It is thus advantageous to

compute gradient on the rendering processors. A much smaller number of input

processors are needed because of the higher cost of rendering. Substituting the new

rendering time 8.4 seconds into our model, we obtain 2.55, which is consistent with

our test result for rendering 512×512 image as shown in Figure 5 (c).

Finally, we tested 2D LIC images which can be done as a preprocessing step and

handled by the Input processors. Figure 5 (d) shows the cost of making simultane-

ous surface LIC and volume visualization using 64 rendering processors with 1DIP

strategy. When 11 input processors are used, computing the LIC images, other pre-

processing, and I/O essentially become free. Given the new preprocessing time,

using our model, we obtain:
(4.0+16.7)

2.13
+ 1 = 10.72

which is consistent with our test results.
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IDIP strategy for rendering 512x512 image

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11

Number of Input Processors

T
im

e
(s

e
c

o
n

d
s

)
Rendering time

Total time

1DIP strategy for redering 1024x1024 image
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1DIP strategy for rendering 512x512 image with lighting
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Fig. 5. Using 64 rendering processors with 1DIP strategy. Our 1DIP model was tested under

four visualization scenarios with different rendering and preprocessing requirements. To

hide the I/O and preprocessing cost, the input processor numbers obtained by our model

are consistent with the test results.

5.2 2D input processors (2DIP)

The strategy 1DIP works well until Ts become larger than Tr. That is, even though

we can increase the rendering rates by using more rendering processors, the 1DIP

approach limits how much we can reduce Ts. We have investigated an alternative

design which uses a two-dimensional configuration of input processors. Basically ,

there are n groups of m input processors. Each group of processors is responsible

for reading, preprocessing, and distributing one complete time step of the data.

Since each time step of the data is distributed among all the rendering processors,

with m input processors working on one time step, it takes about Ts
′ = Ts

m
time for

the m input processors to deliver the data blocks. Now we can control m to keep Ts
′

smaller than Tr so it becomes possible to make the rendering processors busy all

the time. Note that in this way we also spread the preprocessing cost and Tp
′ = Tp

m
.

Given Ts
′
≤ Tr and Ts

′ = Ts

m
, we can obtain m ≥

Ts

Tr
. Similarly as with 1DIP, we let

Tf
′ + Tp

′ = Ts
′(n − 1). Consequently, n =

(Tf
′+Tp

′)

Ts
′ + 1. When Ts

′ = Tr, m = Ts

Tr

and n =
(Tf

′+Tp
′)

Tr
+ 1. Assume each input processor deals with exactly 1

m
of the

data. Then ideally Tp
′ = Tp

m
and Tf

′ =
Tf

m
. Thus, n =

(Tf /m+Tp/m)

Tr
+1 =

(Tf +Tp)

Ts
+1.

In summary, to render a time-varying dataset, we can therefore use 1DIP when Tr

is greater than Ts; otherwise, 2DIP should be used. Figure 6 contrasts 1DIP and
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Fig. 6. The 1DIP and 2DIP configurations.

2DIP configurations.

5.2.1 File reading strategies

MPI-IO, the I/O part of the MPI-2 standard (10), is an interface designed for

portable, high-performance I/O. For example, it provides Data Sieving to enable

more efficient read of many noncontiguous data and Collective I/O to allow for

merging of the I/O requests from different processors and servicing the merged re-

quest. Our designs use both Data Sieving and Collective I/O for 2DIP. However,

we have also developed an alternative approach which experimentally proves to be

more efficient for reading noncontiguous data. Our design requires a parallel file

system with a high bandwidth.

In the 2DIP case, m input processors fetch, preprocess, and distribute one time step

dataset. Recall that, as a load balancing strategy, each rendering processor receives

multiple octree blocks which spread the spatial domain of the data. In order to

make data subsets ready for each rendering processor, each input processor must

reconstruct the hexahedral cell data from the node data according to the octree data.

Since the node data is stored as a linear array on the disk, each processor must make

noncontiguous reads to recover the cell data for each octree block. The parallel I/O

support offered by MPI-IO makes this task easier.

The biggest bottleneck is reading data from the disk storage system to the input pro-

cessors. While it is clear using multiple input processors helps increase the band-

width, we are interested in determining the minimal number of input processors

that must be used for a preselected renderer size to achieve the desired frame rates.

Parallel reads may be done in the following two ways.

Single collective and noncontiguous read

In the first strategy, we rely on MPI-IO support. All input processors fetch a roughly

equal number of hexahedral cells from the disk. Grouping of the cell data is done
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Fig. 7. Octree blocks are assigned to rendering processors according to a load balancing

strategy. Using the second reading method, the node data belonging to the octree block

k likely spread multiple input processors. There is a merging process at every rendering

processor to gather all the relevant node data.

according to the octree data and the load balancing strategy. To avoid duplicating

node data, octree data are merged for each rendering processor. Each of the m input

processors uses

• MPI TYPE CREATE INDEXED BLOCK to derive a data type (e.g., an array

of node data) from the octree data. The derived data type describes one reading

pattern;

• MPI FILE SET VIEW to set the derived data type as the reading pattern of the

current input processor; and

• MPI FILE READ ALL to collectively read the data along with other input pro-

cessors.

At the end, each input processor has a subset of the current time step of the cell

data to be distributed among the rendering processors.

Independent contiguous read

In this case, each input processor independently reads the contiguous 1
m

of a time

step of the node data. Both the node data and the octree data are 1D arrays as shown

in Figure 7. The node data of a particular octree block k likely spread across mul-

tiple input processors. Each input processor therefore scans through the octree data

and creates a mapping between its local node data and the corresponding octree

blocks. Each input processor then forwards both the node data and the map to the

rendering processors according to a load balancing strategy. Each rendering pro-

cessor has to merge the incoming data to form complete local octree blocks of data.

No communication between processors are needed for the merge operations. This

14



2DIP Strategy (Collective Noncontiguous Read)
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Figure 13: Using 2DIP strategy with Collective Noncontiguous Read, sending time is 

2DIP Strategy (Independent Contiguous Read)
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Fig. 8. Using 2DIP strategy Left: with Collective Noncontiguous Read, sending time is

reduced to under 1 second which makes interactive visualization possible. Right: with In-

dependent Contiguous Read, not only the sending time is reduced to under 1 second, but

the total time becomes under 4 seconds.
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Figure 15: The cost of sending one time step when using 2DIP decrease steadily as more 

Fig. 9. The cost of sending one time step when using 2DIP decreases steadily as more

Input processors are used. This plots indicates that it is possible to reach multiple frames

per second rendering rates.

strategy is superior if the overhead of collective I/O would become too high.

5.2.2 Test results

Recall that the purpose of using 2DIP is to employ multiple input processors to

fetch a single time step of the data for further cutting down the sending time, in

contrast to 1DIP which concurrently reads multiple time steps. Figure 8 presents

our test results. Note that using Independent Contiguous Read, the total time can

be reduced to under 4 seconds when using 9 or more input processors to read one

time step of the data. (Recall in the 1DIP case, it takes around 15 seconds to read

and preprocess a single time step of the data.) More importantly, the sending time is

reduced to under 1 second making possible displaying rates at multiple frames per

second, as revealed in Figure 9 which plots the sending time. Our test results also

demonstrate that the Independent Contiguous Read is superior than the Collective

Noncontiguous Read.
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Comparision of 1DIP and 2DIP
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Fig. 10. Comparing 1DIP and 2DIP using 128 rendering processors for rendering 512×512

images. Preprocessing includes data partition and quantization. The rendering time is re-

duced to about 1 second. In this case, overlapping rendering and I/O is only possible with

2DIP.

Finally, Figure 10 compares 1DIP and 2DIP. When the rendering time is reduced

to under a second, using more than 2 input processors per group (i.e., m=2) with

2DIP, we can still completely hide the I/O and preprocessing cost, but not with

IDIP. Adaptive rendering can significantly reduce both the rendering time and the

amount of data that must be transferred from disk to the rendering processors. The

effectiveness of the IDIP or 2DIP strategy stays the same regardless of using adap-

tive rendering or not. All tests were done using Type 2 preprecessing.

6 Conclusion

Our work has been driven by large-scale scientific applications such as earthquake

modeling, supernova modeling, ocean modeling, and turbulence modeling. While

this paper presents our experimental study of parallel I/O strategies for rendering

time-varying data from an earthquake simulation, the visualization requirements

and challenges are common to all applications.

Our parallel visualization solution incorporates adaptive rendering, a highly effi-

ciently parallel image compositing algorithm, and the new I/O strategies to make

possible near-interactive visualization of large-scale time-varying data. Our per-

formance study using up to 276 processors of LeMieux at the PSC demonstrates

convincing results, and also reveals the interplay between data transport strategy

used and interframe delay.

We have shown that using dedicated input processors helps not only remove the

I/O bottleneck but also hide preprocessing cost. We believe it is also possible to use

input processors to achieve dynamic load balancing. In addition, adaptive rendering

will continue to play a major role in our subsequent work. Further I/O optimization

might be possible with adaptive fetching according to the selected level.
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